Site-specific relaxation and recombination by the Tn3 resolvase: recognition of the DNA path between oriented res sites.

نویسندگان

  • M A Krasnow
  • N R Cozzarelli
چکیده

We studied the dynamics of site-specific recombination by the resolvase encoded by the Escherichia coli transposon Tn3. The pure enzyme recombined supercoiled plasmids containing two directly repeated recombination sites, called res sites. Resolvase is the first strictly site-specific topoisomerase. It relaxed only plasmids containing directly repeated res sites; substrates with zero, one or two inverted sites were inert. Even when the proximity of res sites was ensured by catenation of plasmids with a single site, neither relaxation nor recombination occurred. The two circular products of recombination were catenanes interlinked only once. These properties of resolvase require that the path of the DNA between res sites be clearly defined and that strand exchange occur with a unique geometry. A model in which one subunit of a dimeric resolvase is bound at one res site, while the other searches along adjacent DNA until it encounters the second site, would account for the ability of resolvase to distinguish intramolecular from intermolecular sites, to sense the relative orientation of sites and to produce singly interlinked catenanes. Because resolvase is a type 1 topoisomerase, we infer that it makes the required duplex bDNA breaks of recombination one strand at a time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specificity of DNA recognition in the nucleoprotein complex for site-specific recombination by Tn21 resolvase.

Resolvases from Tn3-like transposons catalyse site-specific recombination at res sites. Each res site has 3 binding sites for resolvase, I, II, and III. The res sites in Tn3 and Tn21 have similar structures at I and II but they differ at III. Mutagenesis of the Tn21 res site showed that sub-site III is essential for recombination though the sequences in III that are recognized by Tn21 resolvase...

متن کامل

Synapsis and catalysis by activated Tn3 resolvase mutants

The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with 'activating' mutations, which can catalyse recombination at binding site I of res when the rest of res is absent. Site I x site I recombination promoted by these variants ca...

متن کامل

Synapsis by Tn3 resolvase: speed and dependence on DNA supercoiling.

The transposon Tn3 encodes a protein known as resolvase. During transposition, resolvase catalyses a site-specific recombination between two directly repeated copies of the transposon DNA [I]. Resolvase acts by binding to 120 bp sites on the DNA, known as res sites, each of which contains three sub-sites called I, I1 and 111 [2]. During recombination, three resolvase dimers bind co-operatively ...

متن کامل

Cooperative binding of Tn3 resolvase monomers to a functionally asymmetric binding site

BACKGROUND The inverted repeat is a common feature of protein-binding sites in DNA. The two-fold symmetry of the inverted repeat corresponds to the two-fold symmetry of the protein that binds to it. In most natural inverted-repeat binding sites, however, the DNA sequence does not have perfect two-fold symmetry. Our study of how a site-specific recombinase recognizes an inverted-repeat binding s...

متن کامل

Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity.

Tn3 resolvase promotes site-specific recombination between two res sites, each of which has three resolvase dimer-binding sites. Catalysis of DNA-strand cleavage and rejoining occurs at binding site I, but binding sites II and III are required for recombination. We used an in vivo screen to detect resolvase mutants that were active on res sites with binding sites II and III deleted (that is, on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 1983